首页 > 职业资格考试
题目内容 (请给出正确答案)
[主观题]

设P(x)是n次多项式函数.证明:1)若P(a),P’(a)...P(n)(a)都是正数,则P(x)在(a,+∞)无零点;2)若P(a),P’(a)...P(n)(a)正负号相间,则P(x)在(-∞,a)无零点.

设P(x)是n次多项式函数.证明:1)若P(a),P’(a)...P(n)(a)都是正数,则P(x)在(a,+∞)无零点;2)若P(a),P’(a)...P(n)(a)正负号相间,则P(x)在(-∞,a)无零点.

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“设P(x)是n次多项式函数.证明:1)若P(a),P’(a)…”相关的问题
第1题
1)设f(x)及G(x)是P[x]中m次及≤m+1次多项式。证明:对所有n≥1成立的充分必要条件是G(x+1)-G(x)=f(

1)设f(x)及G(x)是P[x]中m次及≤m+1次多项式。证明:对所有n≥1成立的充分必要条件是G(x+1)-G(x)=f(x)且G(0)=0;

2)证明:对P[x]中任何m次多项式f(x),必有P[x]中次数≤m+1的多项式G(x)满足对任何n≥1的整数成立;

3)求

点击查看答案
第2题
设f(x)∈C[-a,a],pn(x)∈Pn是f(x)的n次最佳一致逼近多项式,证明:当f(x)是偶(奇)函数时,Pn(x)亦是偶(奇)函数。
设f(x)∈C[-a,a],pn(x)∈Pn是f(x)的n次最佳一致逼近多项式,证明:当f(x)是偶(奇)函数时,Pn(x)亦是偶(奇)函数。

点击查看答案
第3题
设是数域P上n维线性空间V的一个线性变换,证明:1)在P[x]中有一次数≤n2的多项式f(x),使2)

是数域P上n维线性空间V的一个线性变换,证明:

1)在P[x]中有一次数≤n2的多项式f(x),使

2)如果,那么这里d(x)是f(x)与g(x)的最大公因式;

3)可逆的充分必要条件是,有一常数项不为零的多项式f(x)使

点击查看答案
第4题
设P[x]中多项式的次数分别为n1,n2,...,ns。证明:若,则在线性空间P[x]中线性相关。

设P[x]中多项式的次数分别为n1,n2,...,ns。证明:若,则在线性空间P[x]中线性相关。

点击查看答案
第5题
设P(n)与Q(n)分别是关于n的p次与q次多项式,且Q(n)≠0.证明:级数
设P(n)与Q(n)分别是关于n的p次与q次多项式,且Q(n)≠0.证明:级数

设P(n)与Q(n)分别是关于n的p次与q次多项式,且Q(n)≠0.证明:

级数

点击查看答案
第6题
设f(x),g(x)是数域P上两个不全为零的多项式。令证明:存在m(x)∈S,使

设f(x),g(x)是数域P上两个不全为零的多项式。令

证明:存在m(x)∈S,使

点击查看答案
第7题
设f(x)是[a,b]上的连续函数,证明存在有理系数的多项式P(x),使得其中ε是预先给定的任意正数.

设f(x)是[a,b]上的连续函数,证明存在有理系数的多项式P(x),使得其中ε是预先给定的任意正数.

点击查看答案
第8题
设g1(x)是[a,b]上带权ρ(x)的l次正交多项式,pk(x)为任意k次代数多项式,证明:(pk,g1)=0,k<l。
设g1(x)是[a,b]上带权ρ(x)的l次正交多项式,pk(x)为任意k次代数多项式,证明:(pk,g1)=0,k<l。

点击查看答案
第9题
设。用线性方程组的理论证明,若f(x)有n+1个不同的根,那么f(x)是零多项式。

。用线性方程组的理论证明,若f(x)有n+1个不同的根,那么f(x)是零多项式。

点击查看答案
第10题
设f(x)为可导函数,证明:若x=1时有则必有
设f(x)为可导函数,证明:若x=1时有则必有

设f(x)为可导函数,证明:若x=1时有

则必有

点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改