A.各基分类器之间有较强依赖,不可以进行并行训练
B.最著名的算法之一是基于决策树基分类器的随机森林
C.当训练样本数量较少时,子集之间可能有重叠
D.为了让基分类器之间互相独立,需要将训练集分为若干子集
A.条件独立性假设不成立时,朴素贝叶斯分类器仍有可能产生最优贝叶斯分类器
B.在估计概率值时使用的拉普拉斯修正避免了因训练集样本不充分而导致概率估值为零的问题
C.由于马尔可夫链通常很快就能趋于平稳分布,因此吉布斯采样算法的收敛速度很快
D.二分类任务中两类数据满足高斯分布且方差相同时,线性判别分析产生贝叶斯最优分类器
A.可以对不同分类器算法进行集成
B.可以对相同分类器在不同条件下集成
C.集成算法无法在不同条件下进行集成
D.对数据集不同部分分配给不同分类器后集成
A.在所构成的强分类器中,每个弱分类器的权重是不一样的
B.在每一次训练弱分类器中,每个样本的权重累加起来等于1
C.在所构成的强分类器中,每个弱分类器的权重累加起来等于1
D.该算法将若干弱分类器线性加权组合起来,形成一个强分类器