首页 > 学历类考试> 公共管理硕士
题目内容 (请给出正确答案)
[主观题]

设G是一个群,a∈G。映射叫做G的一个左平移。证明:(i)左平移是G到自身的一个双射;(ii)设a,b∈G,定义

设G是一个群,a∈G。映射设G是一个群,a∈G。映射叫做G的一个左平移。证明:(i)左平移是G到自身的一个双射;(ii)设a,叫做G的一个左平移。证明:

(i)左平移是G到自身的一个双射;

(ii)设a,b∈G,定义λaλba·λb(映射的合成),则G的全体左平移{λa|a∈G}对于这样定义的乘法作成一个群G';

(iii)G≌G'。

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“设G是一个群,a∈G。映射叫做G的一个左平移。证明:(i)左…”相关的问题
第1题
设G,H是群。在GxH={(g,h)|g∈G,h∈H}中定义乘法:(g,h)(g',h')=(gg',hh')。证明GxH对于这样定义的乘法来说作成一个群。

点击查看答案
第2题
设是一个群,H,K是其子群.定义G上的关系R:对任意a,bG,aRb存在hH,k K,使得b=h*a*k,则R是G上的等

是一个群,H,K是其子群.定义G上的关系R:对任意a,bG,aRb存在hH,kK,使得b=h*a*k,则R是G上的等价关系.

点击查看答案
第3题
假设f:A→B并定义一个函数对于b∈B,有证明:如果f是A到B的满映射,则G是入射的,其逆成立吗?

假设f:A→B并定义一个函数对于b∈B,有证明:如果f是A到B的满映射,则G是入射的,其逆成立吗?

点击查看答案
第4题
一个群G的中心K是一个交换群。()
点击查看答案
第5题
设为一个群.证明:(1)若对任意aG有a2=e,则G为阿贝尔群.(2)若对任意a,b G有(a*b)2=a

为一个群.证明:

(1)若对任意aG有a2=e,则G为阿贝尔群.

(2)若对任意a,bG有(a*b)2=a2*b2,则G为阿贝尔群.

点击查看答案
第6题
设是A到B的单射,是B到C的单射,则g提A到C的()。

A.单射

B.黄肘

C.双射

D.可逆映射

点击查看答案
第7题
设为群,a为G中阶为k的元素,集合(1)求Ga的基数(2)问是否构成一个群,为什么?

为群,a为G中阶为k的元素,集合

(1)求Ga的基数

(2)问是否构成一个群,为什么?

点击查看答案
第8题
设G是运算写作乘法的群,则群G的任意两个子群的乘积还是子群。()
点击查看答案
第9题
设是映射,又令,证明:(i)如果h是单射,那么f也是单射;(ii)如果h是满射,那么g也是满射;(iii)如果f

是映射,又令,证明:

(i)如果h是单射,那么f也是单射;

(ii)如果h是满射,那么g也是满射;

(iii)如果f,g都是双射,那么h也是双射,并且

点击查看答案
第10题
设G为流网且提一个流。|f|成为最大流的充分必要条件是()。

点击查看答案
退出 登录/注册
发送账号至手机
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改