首页 > 建筑工程类考试
题目内容 (请给出正确答案)
[主观题]

设(G,△)是一个群,而a∈G.如果f是从G到G的映射,使得对于每一个x∈G,都有f(x)=a△x△a-1,证明:f是从G到G的自同构.

设(G,△)是一个群,而a∈G.如果f是从G到G的映射,使得对于每一个x∈G,都有f(x)=a△x△a-1,证明:f是从G到G的自同构.

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“设(G,△)是一个群,而a∈G.如果f是从G到G的映射,使得…”相关的问题
第1题
设G是群,K≤H≤G.又A={a1,a2,…)与B={b1,b2,…}分别为G关于H和H,关于K的左陪集代表系.证明: AB={aib
j|ai∈A,bj∈B} 是G关于K的一个左陪集代表系.

点击查看答案
第2题
设G=R×R,R为实数集,G上的一个二元运算+定义为 〈x1,y1〉+〈x2,y2〉=〈x1+x2,y1+y2〉. 又设H={(x,y)|y=2x},证明:

设G=R×R,R为实数集,G上的一个二元运算+定义为

〈x1,y1〉+〈x2,y2〉=〈x1+x2,y1+y2〉.

又设H={(x,y)|y=2x},证明:(G,+)为阿贝尔群,(H,+)为子群,并求(x0,y0)H,(x0,y0)∈G.

点击查看答案
第3题
设G是有限群,且H<G.证明:设群G是其子群G1与G2的直积,即 G=G1×G2. 证明:G/G1≌G2, G/G2≌G1.

设群G是其子群G1与G2的直积,即 G=G1×G2. 证明:G/G1≌G2, G/G2≌G1.

点击查看答案
第4题
设f和g为函数,且证明f=g.

设f和g为函数,且证明f=g.

点击查看答案
第5题
设<G,*>是非零实数乘法群,f:G→G是同态映射,f(x)=1/x,则f(G)=(),Ker(f)=()。

点击查看答案
第6题
设f(x),g(x)∈P[x].m(x)∈P[x]叫f(x),g(x)的最小公倍式,如果m(x)满足下面条件:试证:1)f(x),g(x)

设f(x),g(x)∈P[x].m(x)∈P[x]叫f(x),g(x)的最小公倍式,如果m(x)满足下面条件:

试证:

1)f(x),g(x)的最小公倍式存在,且除一个非零常数因子外是唯一一的。

2)以[f(x),g(x)]表示f(x),g(x)的首项系数为1的最小公倍式,若f(x),g(x)都是首一的,则[f(x),g(x)](f(x),g(x))=f(x)g(x).

3)设

为f(x).g(x)的标准分解,则

点击查看答案
第7题
设H,K是群G的两个有限正规子群,并且(H|,|K|)=1.证明:如果商群G/H和G/K都是交换群,则G也是交换群

设H,K是群G的两个有限正规子群,并且(H|,|K|)=1.证明:如果商群G/H和G/K都是交换群,则G也是交换群.

点击查看答案
第8题
设是数域P上n维线性空间V的一个线性变换,证明:1)在P[x]中有一次数≤n2的多项式f(x),使2)

是数域P上n维线性空间V的一个线性变换,证明:

1)在P[x]中有一次数≤n2的多项式f(x),使

2)如果,那么这里d(x)是f(x)与g(x)的最大公因式;

3)可逆的充分必要条件是,有一常数项不为零的多项式f(x)使

点击查看答案
第9题
设P1:AXB→A使P1(x,y))=x P2:AXB→B,使P2((x,y))=y 令f:X→A,g:X→B,证明有在一的函数Φ:X→AXB,使P1·Φ=f,P2·Φ=g.

点击查看答案
第10题
设(G,*)是一个群,a,b∈G且(a*b)2=a2*b2.试证明:a*b=b*a.

设(G,*)是一个群,a,b∈G且(a*b)2=a2*b2.试证明:a*b=b*a.

点击查看答案
第11题
设G是一个群,a∈G。映射叫做G的一个左平移。证明:(i)左平移是G到自身的一个双射;(ii)设a,b∈G,定义

设G是一个群,a∈G。映射叫做G的一个左平移。证明:

(i)左平移是G到自身的一个双射;

(ii)设a,b∈G,定义λaλba·λb(映射的合成),则G的全体左平移{λa|a∈G}对于这样定义的乘法作成一个群G';

(iii)G≌G'。

点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改